

Welcome to django-field-history’s documentation!

Contents:

	django-field-history
	Documentation

	Features

	Quickstart

	Management Commands

	Storing Which User Changed the Field

	Working with MySQL

	Running Tests

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Background

	History
	0.7.0 (September 3, 2018)

	0.6.0 (December 22, 2016)

	0.5.0 (April 16, 2016)

	0.4.0 (February 24, 2016)

	0.3.0 (February 20, 2016)

	0.2.0 (February 17, 2016)

django-field-history

[image: _images/django-field-history.svg]
 [https://badge.fury.io/py/django-field-history][image: Documentation Status]
 [https://django-field-history.readthedocs.io/en/latest/?badge=latest][image: _images/django-field-history1.svg]
 [https://travis-ci.org/grantmcconnaughey/django-field-history][image: _images/badge.svg]
 [https://coveralls.io/github/grantmcconnaughey/django-field-history?branch=master]A Django app to track changes to a model field. For Python 2.7/3.4+ and Django 1.11/2.0+.

Other similar apps are django-reversion [https://github.com/etianen/django-reversion] and django-simple-history [https://github.com/treyhunner/django-simple-history], which track all model fields.

	Project

	django-field-history

	django-reversion

	django-simple-history

	Admin Integration

	N/A

	Yes

	Yes

	All/Some fields

	Some

	Some

	All

	Object History

	No

	Yes

	Yes

	Model History

	N/A

	No

	Yes

	Multi-object Revisions

	N/A

	Yes

	No

	Extra Model Manager

	Yes

	No

	Yes

	Model Registry

	No

	Yes

	No

	Django View Helpers

	No

	Yes

	No

	Manager Helper Methods

	N/A

	Yes

	Yes (as_of, most_recent)

	MySQL Support

	Extra config

	Complete

	Complete

Documentation

The full documentation is at https://django-field-history.readthedocs.io.

Features

	Keeps a history of all changes to a particular model’s field.

	Stores the field’s name, value, date and time of change, and the user that changed it.

	Works with all model field types (except ManyToManyField).

Quickstart

Install django-field-history:

pip install django-field-history

Be sure to put it in INSTALLED_APPS.

INSTALLED_APPS = [
 # other apps...
 'field_history',
]

Then add it to your models.

from field_history.tracker import FieldHistoryTracker

class PizzaOrder(models.Model):
 STATUS_CHOICES = (
 ('ORDERED', 'Ordered'),
 ('COOKING', 'Cooking'),
 ('COMPLETE', 'Complete'),
)
 status = models.CharField(max_length=64, choices=STATUS_CHOICES)

 field_history = FieldHistoryTracker(['status'])

Now each time you change the order’s status field information about that change will be stored in the database.

from field_history.models import FieldHistory

No FieldHistory objects yet
assert FieldHistory.objects.count() == 0

Creating an object will make one
pizza_order = PizzaOrder.objects.create(status='ORDERED')
assert FieldHistory.objects.count() == 1

This object has some fields on it
history = FieldHistory.objects.get()
assert history.object == pizza_order
assert history.field_name == 'status'
assert history.field_value == 'ORDERED'
assert history.date_created is not None

You can query FieldHistory using the get_{field_name}_history()
method added to your model
histories = pizza_order.get_status_history()
assert list(FieldHistory.objects.all()) == list(histories)

Or using the custom FieldHistory manager
histories2 = FieldHistory.objects.get_for_model_and_field(pizza_order, 'status')
assert list(histories) == list(histories2)

Updating that particular field creates a new FieldHistory
pizza_order.status = 'COOKING'
pizza_order.save()
assert FieldHistory.objects.count() == 2

updated_history = histories.latest()
assert updated_history.object == pizza_order
assert updated_history.field_name == 'status'
assert updated_history.field_value == 'COOKING'
assert updated_history.date_created is not None

Management Commands

django-field-history comes with a few management commands.

createinitialfieldhistory

This command will inspect all of the models in your application and create FieldHistory objects for the models that have a FieldHistoryTracker. Run this the first time you install django-field-history.

python manage.py createinitialfieldhistory

renamefieldhistory

Use this command after changing a model field name of a field you track with FieldHistoryTracker:

python manage.py renamefieldhistory --model=app_label.model_name --from_field=old_field_name --to_field=new_field_name

For instance, if you have this model:

class Person(models.Model):
 username = models.CharField(max_length=255)

 field_history = FieldHistoryTracker(['username'])

And you change the username field name to handle:

class Person(models.Model):
 handle = models.CharField(max_length=255)

 field_history = FieldHistoryTracker(['handle'])

You will need to also update the field_name value in all FieldHistory objects that point to this model:

python manage.py renamefieldhistory --model=myapp.Person --from_field=username --to_field=handle

Storing Which User Changed the Field

There are two ways to store the user that changed your model field. The simplest way is to use the logged in user that made the request. To do this, add the FieldHistoryMiddleware class to your MIDDLEWARE setting.

MIDDLEWARE = [
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'field_history.middleware.FieldHistoryMiddleware',
]

Alternatively, you can add a _field_history_user property to the model that has fields you are tracking. This property should return the user you would like stored on FieldHistory when your field is updated.

class Pizza(models.Model):
 name = models.CharField(max_length=255)
 updated_by = models.ForeignKey('auth.User')

 field_history = FieldHistoryTracker(['name'])

 @property
 def _field_history_user(self):
 return self.updated_by

Working with MySQL

If you’re using MySQL, the default configuration will throw an exception when you run migrations. (By default, FieldHistory.object_id is implemented as a TextField for flexibility, but indexed columns in MySQL InnoDB tables may be a maximum of 767 bytes.) To fix this, you can set FIELD_HISTORY_OBJECT_ID_TYPE in settings.py to override the default field type with one that meets MySQL’s constraints. FIELD_HISTORY_OBJECT_ID_TYPE may be set to either:

	the Django model field class you wish to use, or

	a tuple (field_class, kwargs), where field_class is a Django model field class and kwargs is a dict of arguments to pass to the field class constructor.

To approximate the default behavior for Postgres when using MySQL, configure object_id to use a CharField by adding the following to settings.py:

from django.db import models
FIELD_HISTORY_OBJECT_ID_TYPE = (models.CharField, {'max_length': 100})

FIELD_HISTORY_OBJECT_ID_TYPE also allows you to use a field type that’s more efficient for your use case, even if you’re using Postgres (or a similarly unconstrained database). For example, if you always let Django auto-create an id field (implemented internally as an AutoField), setting FIELD_HISTORY_OBJECT_ID_TYPE to IntegerField will result in efficiency gains (both in time and space). This would look like:

from django.db import models
FIELD_HISTORY_OBJECT_ID_TYPE = models.IntegerField

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements-test.txt
(myenv) $ python runtests.py

Installation

At the command line:

$ easy_install django-field-history

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-field-history
$ pip install django-field-history

Usage

To use django-field-history in a project:

import field_history

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/grantmcconnaughey/django-field-history/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-field-history could always use more documentation, whether as part of the
official django-field-history docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/grantmcconnaughey/django-field-history/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-field-history for local development.

	Fork the django-field-history repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-field-history.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-field-history
$ cd django-field-history/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests:

$ flake8 field_history
$ python runtests.py tests

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and 3.2+, and for Django 1.8+. Check
https://travis-ci.org/grantmcconnaughey/django-field-history/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.tests

Credits

Development Lead

	Grant McConnaughey <grantmcconnaughey@gmail.com>

Contributors

	Boris Shifrin <https://github.com/ramusus>

	Matheus Cansian <https://github.com/mscansian>

Background

The FieldHistoryTracker class in this project is based off of the FieldTracker class from django-model-utils [https://github.com/carljm/django-model-utils]. The following authors contributed to FieldTracker:

	Trey Hunner

	Matthew Schinckel

	Mikhail Silonov

	Carl Meyer

	@bboogaard

History

0.7.0 (September 3, 2018)

	Added support for Django 2.0 and 2.1

	Added support for Python 3.7

	Dropped support for Django 1.7 through 1.10

	Dropped support for Python 3.2 and 3.3

	Fixed generic primary key bug with createinitialfieldhistory command (#20)

0.6.0 (December 22, 2016)

	Added Django 1.10 compatibility.

	Added MySQL compatibility.

	Fixed issue that would duplicate tracked fields.

0.5.0 (April 16, 2016)

	Added the ability to track field history of parent models.

	Added Django 1.7 compatibility.

0.4.0 (February 24, 2016)

	Added a way to automatically store the logged in user on FieldHistory.user.

0.3.0 (February 20, 2016)

	FieldHistory objects are now created using bulk_create, which means only one query will be executed, even when changing multiple fields at the same time.

	Added a way to store which user updated a field.

	Added get_latest_by to FieldHistory Meta options so .latest() and .earliest() can be used.

	Added createinitialfieldhistory management command.

	Added renamefieldhistory management command.

0.2.0 (February 17, 2016)

	First release on PyPI.

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-field-history’s documentation!

 		
 django-field-history

 		
 Documentation

 		
 Features

 		
 Quickstart

 		
 Management Commands

 		
 createinitialfieldhistory

 		
 renamefieldhistory

 		
 Storing Which User Changed the Field

 		
 Working with MySQL

 		
 Running Tests

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Background

 		
 History

 		
 0.7.0 (September 3, 2018)

 		
 0.6.0 (December 22, 2016)

 		
 0.5.0 (April 16, 2016)

 		
 0.4.0 (February 24, 2016)

 		
 0.3.0 (February 20, 2016)

 		
 0.2.0 (February 17, 2016)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

